Combining Pixel-based and Object-oriented Support Vector Machines Using Bayesian Probability Theory

نویسنده

  • M. Salah
چکیده

This study employed a hybrid system for the combination of pixel-based (PB) and object-oriented (OO) Support Vector Machines (SVMs) based on Bayesian Probability Theory (BPT) for improved land cover classification. A set of uncorrelated feature attributes have been generated from a one-meter IKONOS satellite image. Four different SVMs kernels were compared and tested to classify buildings, trees, roads and ground from satellite image and the generated attributes. The kernels used include: linear, polynomial, radial basis function (RBF), and sigmoid. PB and OO SVMs have been applied to classify the image. BPT was then applied for combining the class memberships from the PB and OO classifiers. Accuracy assessment was carried out using reference data sets derived from the one-meter IKONOS image. The outcomes demonstrate that the OO method has achieved an overall kappa coefficient of 0.8286, compared with 0.6327 that was derived from the conventional PB method. The improvement in overall kappa obtained from the combined system was 0.0608 over the OO SVMs. * Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River

Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...

متن کامل

Comparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones

Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas.  nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Dempster-shafer Theory Based Multi-class Support Vector Machines and Their Applications

How to extend standard support vector machines to solve multi-class classification problem and yield the outputs in the frame of Dempster-Shafer theory is useful. The multi-class probability support vector machine is proposed, firstly. The Dempster-Shafer theory based multi-class support vector machine is designed by constructing probability support vector machines for binary classification usi...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014